Topological Superconductivity

Annica Black-Schaffer

annica.black-schaffer@physics.uu.se

UPPSALA UNIVERSITET

Materials Theory

6th MaNEP winter school, Saas Fee, January 2015

Introduction to Superconductivity

What is it?

How do we describe it?

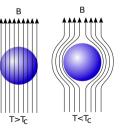
UPPSALA UNIVERSITET Contents

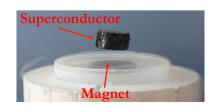
- Introduction to superconductivity
 - BCS theory
 - BdG formulation
- Unconventional superconductivity
- Topological matter
- Topological superconductivity
 - Chiral superconductors
 - "Spinless" superconductors Majorana fermions

UPPSALA UNIVERSITET What is Superconductivity?

- What is superconductivity?
 - Electric transport without resistance

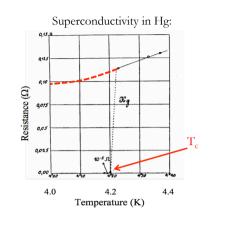
– Meissner effect

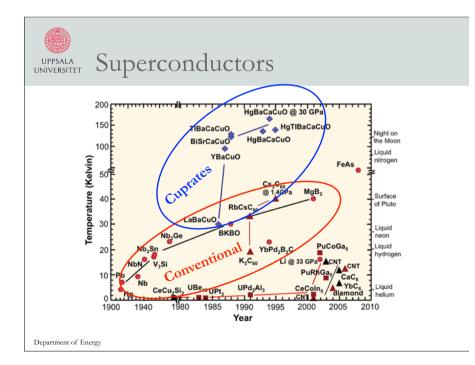




UPPSALA UNIVERSITET History of Superconductivity

Heike Kammerlingh Onnes





Year	Subject	Laureates
1972	Superconductivity (BCS-Theory)	J. Bardeen L. N. Cooper J. R. Schrieffer
1973	Josephson Effects + Tunneling Phenomena	B. D. Josephson L. Esaki I. Giaever
1987	High Temperature Superconductors	J. G. Bednorz K. A. Mueller
1996	Superfluidity in ³ He	D. M. Lee D. D. Osheroff R. C. Richardson
2003	Contributions to Superconductivity	A. A. Abrikosov V. L. Ginzburg <u>A. J. Legget</u>
2008	Spontaneous Symmetry Breaking	Y. Nambu

- But how do the electrons move without resistance?
 - The electrons are all in a coherent quantum state with a fixed phase (condensate)

$$\Psi = \Delta_0 e^{i \Theta}$$

- One of the few macroscopic manifestations of QM
- Spontaneous gauge symmetry breaking Higgs mechanism (discovered by P. W. Anderson before Higgs et al.)

- In the Standard Model:
 - Interactions with the Higgs field (Higgs bosons) give masses to the W^{+,-} and Z bosons due to electroweak (gauge) symmetry breaking
- In superconductors:
 - The superconducting pairs give mass to the electromagnetic field (photons) due to spontaneous symmetry breaking of the gauge symmetry (fixed phase on Ψ)
 - Explored by P.W. Anderson for superconductivity 2 years before Higgs et al.

Meissner effect = The "Higgs mass" of the electromagnetic field expels it from the superconductor

UPPSALA UNIVERSITET But Wait!

- All electrons in one state: a superconducting condensate
 - Pauli exclusion principle??

How do electrons end up in the same state?

• Fermions (half-integer spin):

- Photons, gauge, and Higgs boson

- Electrons, quarks, neutrinos
- Only one electron per quantum state
- Bosons (integer spin):

 As many particles as you wish in one quantum state (Bose-Einstein condensate, BEC)

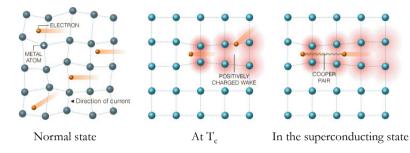
Maybe two electrons can form an electron pair!?

Sort of, but not the whole story....

UPPSALA UNIVERSITET Electron Pairing

- Electrons are negatively charged, how can they possibly pair?
 - In fact, they can pair pretty easily (at least at very, very low temperatures)
- The only instability of a Fermi Liquid is to attractive interactions
 - Any attractive interaction destroys the Fermi Liquid and creates electron pairs: Cooper pairs

• Where is attractive interaction coming from?

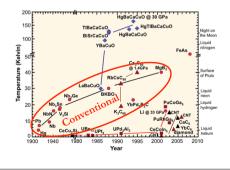


Electron-lattice vibration (phonon) interactions gives an effective attractive potential between two electrons

- How do the Cooper pairs condense (superconduct)?
- Bardeen-Cooper-Schrieffer (BCS) theory:
 - Condensation of Cooper pairs (with a fermionic wave function)
 - Truly many-body state (not a two-body bound state condensing)

(Higher temperatures than BECs)

- Superconductivity from electron-phonon interactions
 - Superconductivity in "normal" metals
 - Low temperatures, $T_c \le 40$ K



UPPSALA UNIVERSITET Cooper Pairs

Pair of electrons above the Fermi surface (FS) with no net momentum:

$$|\Psi\rangle = \Lambda^{\dagger} |FS\rangle$$

$$\Lambda^{\dagger} = \int d^{3}x d^{3}x' \phi(\mathbf{x} - \mathbf{x}') \psi^{\dagger}_{\downarrow}(\mathbf{x}) \psi^{\dagger}_{\uparrow}(\mathbf{x}') \qquad |FS\rangle = \prod_{k < k_{F}} c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow} |0\rangle$$
Fourier transform $(\psi^{\dagger}_{\sigma}(\mathbf{x}) = \frac{1}{\sqrt{V}} \sum_{\mathbf{k}} c^{\dagger}_{\mathbf{k}\sigma} e^{-i\mathbf{k}\cdot\mathbf{x}})$:
$$\Lambda^{\dagger} = \sum_{\mathbf{k}} \phi_{\mathbf{k}} c^{\dagger}_{\mathbf{k}\downarrow} c^{\dagger}_{-\mathbf{k}\uparrow}$$
spatial property of the Cooper pair
$$H = \sum_{\mathbf{k}} \epsilon_{\mathbf{k}} c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} + \hat{V} \text{ the energy of a Cooper pair is } < 0$$

$$\Rightarrow \text{ FS is unstable to Cooper pair formation for any V < 0}$$
(see e.g. Tinkham: Introduction to superconductivity)

Coherent state of Cooper pairs (ansatz):

$$|\psi_{BCS}\rangle = \prod_{\mathbf{k}} \exp[\phi_{\mathbf{k}}c^{\dagger}_{\mathbf{k}\uparrow}c^{\dagger}_{-\mathbf{k}\downarrow}]|0\rangle = \prod_{\mathbf{k}} (1 + \phi_{\mathbf{k}}c^{\dagger}_{\mathbf{k}\uparrow}c^{\dagger}_{-\mathbf{k}\downarrow})|0\rangle$$
$$= \prod_{\mathbf{k}} \left(u_{\mathbf{k}} + v_{\mathbf{k}}c^{\dagger}_{-\mathbf{k}\downarrow}c^{\dagger}_{\mathbf{k}\uparrow}\right)|0\rangle$$
with $|u_{\mathbf{k}}|^{2} + |v_{\mathbf{k}}|^{2} = 1$

• Ill-defined number of particles:

 $\Delta \varphi \Delta N \gtrsim 1$ phase of order parameter: fixed (but same energy for all phases)

• Breaks gauge invariance: $c^{\dagger}_{\mathbf{k}\sigma} \rightarrow e^{i\alpha}c^{\dagger}_{\mathbf{k}\sigma}$

UPPSALA UNIVERSITET BCS Hamiltonian

Pairing Hamiltonian:

$$H = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}\sigma} c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} + \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow} c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow}$$

kinetic (band) energy
$$V_{\mathbf{k},\mathbf{k}'} = \begin{cases} -g_0/V, & (|\epsilon_{\mathbf{k}}| < \omega_D) \\ 0 & (\text{otherwise}) \end{cases}$$

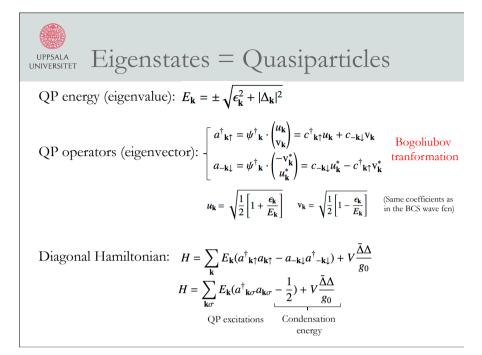
We can determine $u_{\mathbf{k}}$, $v_{\mathbf{k}}$ in ψ_{BCS} by minimizing $\langle \psi_{BCS} | H-\mu N | \psi_{BCS} \rangle$ but it is a bit clumsy (see e.g. Tinkham: Introduction to superconductivity)

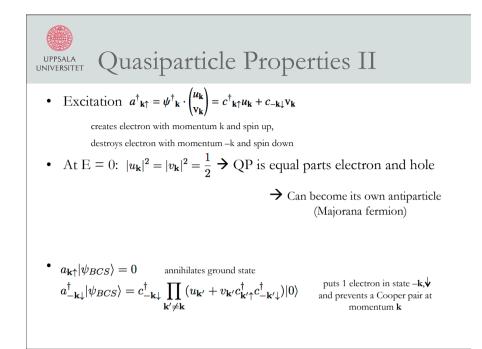
Instead we use mean-field theory with the order parameter

$$F_{\mathbf{k}} = \langle c_{-\mathbf{k}\downarrow} c_{\mathbf{k}\uparrow} \rangle$$

pair amplitude at ${\bf k}$ (off-diagonal long-range order)

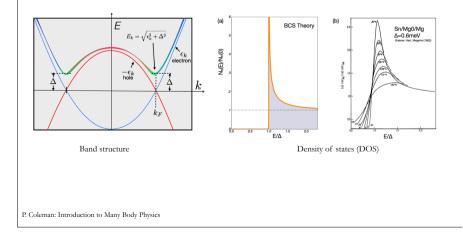
EXAMPLE 1 EVALUATE: EXAMPLE 1 EVALUATE: EVALUATE: EVALUATE: EVALUATE: EVALUATE: EVALUATE: EVALUATE: EVALUATE: EVALUATE: EVALUAT: EVALUAT:





UPPSALA UNIVERSITET Quasiparticle Properties

• Excitations out of the condensate, always positive energy



UPPSALA UNIVERSITET Self-Consistent Equation

Having found the diagonal Hamiltonian we can determine the superconducting order parameter self-consistently:

$$\Delta_{\mathbf{k}} = \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \langle c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow} \rangle = \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} u_{\mathbf{k}'} v_{\mathbf{k}'}^* \langle a_{\mathbf{k}'\uparrow}^{\dagger} a_{\mathbf{k}'\uparrow} + a_{-\mathbf{k}'\downarrow}^{\dagger} a_{\mathbf{k}'\downarrow} - 1 \rangle$$

$$\langle a_{\mathbf{k}'\sigma}^{\dagger} a_{\mathbf{k}'\sigma} \rangle = (1 + e^{E_{\mathbf{k}'}/k_BT})^{-1} \quad \stackrel{\text{Fermi-Dirac}}{\text{distribution}}$$

$$\Delta_{\mathbf{k}} = -\frac{1}{2} \sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \frac{\Delta_{\mathbf{k}'}}{E_{\mathbf{k}'}} \tanh[E_{\mathbf{k}'}/(2k_BT)]$$

$$At T = 0: \quad \Delta_{\mathbf{k}} = -\frac{1}{2} \sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \frac{\Delta_{\mathbf{k}'}}{E_{\mathbf{k}'}}$$

EVENCE Summary BCS Theory
BCS wave function:
$$|BCS\rangle = \prod_{\mathbf{k}} (u_{\mathbf{k}} + v_{\mathbf{k}}c_{\mathbf{k}\uparrow}^{\dagger}c_{-\mathbf{k}\downarrow}^{\dagger})|\phi_{0}\rangle$$

Hamiltonian with kinetic energy $\varepsilon_{\mathbf{k}}$ and a pairing potential $V_{\mathbf{k}}$:
Quasiparticle energy: $E_{\mathbf{k}} = \sqrt{\varepsilon_{\mathbf{k}}^{2} + |\Delta_{\mathbf{k}}|^{2}}$
Summary set $V_{\mathbf{k}}$:
 $V_{\mathbf{k}}$:
Quasiparticle energy: $E_{\mathbf{k}} = \sqrt{\varepsilon_{\mathbf{k}}^{2} + |\Delta_{\mathbf{k}}|^{2}}$
 $V_{\mathbf{k}} = \frac{|u_{\mathbf{k}\uparrow} = u_{\mathbf{k}}^{*}c_{\mathbf{k}\uparrow} + v_{\mathbf{k}}^{*}c_{-\mathbf{k}\downarrow}^{\dagger}}{|v_{\mathbf{k}}|^{2} = 1 - |u_{\mathbf{k}}|^{2} = \frac{1}{2}\left(1 - \frac{\varepsilon_{\mathbf{k}}}{E_{\mathbf{k}}}\right)}$
Order parameter (Ψ before): $\Delta_{\mathbf{k}} = -\frac{1}{2}\sum_{\mathbf{k}'} \frac{\Delta_{\mathbf{k}'}}{E_{\mathbf{k}'}} V_{\mathbf{k},\mathbf{k}'}$

UPPSALA UNIVERSITET

Introduction to Superconductivity

What is it?

A charged superfluid of Cooper pairs (2 electrons) with fermionic character Cooper pairs formed by effective attractive interaction

How do we describe it? BCS theory for the condensation BdG matrix formalism

Unconventional Superconductivity

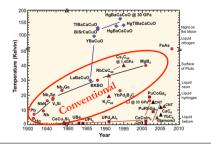
What is unconventional?

How do we handle unconventional superconductivity?

UPPSALA UNIVERSITET Conventional Superconductors

- Superconductivity from electron-phonon interactions
 - Superconductivity in "normal" metals
 - Low temperatures, $T_c \le 40$ K

- Isotropic pairing
$$\left(\Delta_{\mathbf{k}} = -\frac{1}{2}\sum_{\mathbf{l}}\frac{\Delta_{\mathbf{l}}}{E_{\mathbf{l}}}V_{\mathbf{k}\mathbf{l}} = \Delta\right)$$



UNIVERSITET Superconducting Symmetries

Superconducting order parameter is fermionic i.e. odd under particle exchange:

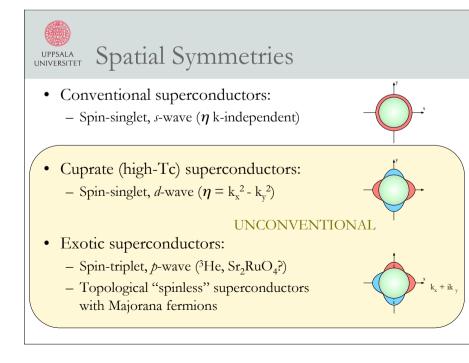
UPPSALA UNIVERSITET Superconducting Symmetries

 $V_{{\bf k},{\bf k}'}$ (and the band structure) determines the pairing symmetry, but it often very hard to determine

- Lattice fluctations: spin-singlet s-wave
- Antiferromagnetic spin fluctuations: spin-singlet *d*-wave (extended s-wave)
- Ferromagnetic spin fluctuations: spin-triplet *p*-wave
- Strong on-site repulsion (Heisenberg interaction): spin-singlet *d*-wave

Is there a way to determine the possible pairing symmetries in a material without knowledge of $V_{k,k}$?

Yes, we can do a general symmetry group analysis See e.g. Sigrist and Ueda, RMP **63**, 239 (1991)



UPPSALA UNIVERSITET General Pairing Hamiltonian

General pairing Hamiltonian:
$$\mathcal{H} = \sum_{\mathbf{k},s} \varepsilon(\mathbf{k}) a_{\mathbf{k}s}^{\dagger} a_{\mathbf{k}s}$$
$$+ \frac{1}{2} \sum_{\mathbf{k},\mathbf{k}',\mathbf{s}_1,\mathbf{s}_2,\mathbf{s}_3,\mathbf{s}_4} V_{s_1s_2s_3s_4}(\mathbf{k},\mathbf{k}') a_{-\mathbf{k}s_1}^{\dagger} a_{\mathbf{k}s_2}^{\dagger} a_{\mathbf{k}'s_3} a_{-\mathbf{k}'s_4}^{\dagger}$$

Mean-field order parameter: $\Delta_{ss'}(\mathbf{k}) = -\sum_{\mathbf{k}', s_3, s_4} V_{s's_3s_4}(\mathbf{k}, \mathbf{k}') \langle a_{\mathbf{k}'s_3} a_{-\mathbf{k}'s_4} \rangle$

$$\rightarrow \quad \widetilde{\mathcal{H}} = \sum_{\mathbf{k},s} \varepsilon(\mathbf{k}) a_{\mathbf{k}s}^{\dagger} a_{\mathbf{k}s} + \frac{1}{2} \sum_{\mathbf{k},s_1,s_2} \left[\Delta_{s_1 s_2}(\mathbf{k}) a_{\mathbf{k}s_1}^{\dagger} a_{-\mathbf{k}s_2}^{\dagger} - \Delta_{s_1 s_2}^{\ast}(-\mathbf{k}) a_{-\mathbf{k}s_1} a_{\mathbf{k}s_2}^{\dagger} \right]$$

UPPSALA UNIVERSITET Matrix Formulation 4-component notation (Nambu): $\mathbf{a}_{\mathbf{k}} = (a_{\mathbf{k}\uparrow}, a_{\mathbf{k}\downarrow}, a^{\dagger}_{-\mathbf{k}\uparrow}, a^{\dagger}_{-\mathbf{k}\downarrow})^{\mathsf{T}}$ $\Rightarrow \tilde{\mathcal{H}} = \mathbf{a}_{\mathbf{k}}^{\dagger} \begin{pmatrix} \varepsilon(\mathbf{k})\sigma_{0} & \hat{\Delta}(\mathbf{k}) \\ \hat{\Delta}^{\dagger}(\mathbf{k}) & -\varepsilon(\mathbf{k})\sigma_{0} \end{pmatrix} \mathbf{a}_{\mathbf{k}}$ Spin-singlet pairing: $\hat{\Delta}(\mathbf{k}) = i\partial_{y}\psi(\mathbf{k}) = \begin{bmatrix} 0 & \psi(\mathbf{k}) \\ -\psi(\mathbf{k}) & 0 \end{bmatrix}$ ψ even $\begin{bmatrix} \psi(\mathbf{k})[c_{\mathbf{k}\uparrow}^{\dagger}c_{-\mathbf{k}\downarrow}^{\dagger}-c_{\mathbf{k}\uparrow}^{\dagger}c_{-\mathbf{k}\downarrow}] \end{bmatrix}$ Spin-triplet pairing: $\hat{\Delta}(\mathbf{k}) = i(\mathbf{d}(\mathbf{k})\cdot\hat{\sigma})\partial_{y}$ \mathbf{d} vectorial odd

-triplet pairing: $\Delta(\mathbf{k}) = i(\mathbf{d}(\mathbf{k}) \cdot \hat{\sigma}) \partial_{y}$ $= \begin{pmatrix} -d_{x}(\mathbf{k}) + id_{y}(\mathbf{k}) & d_{z}(\mathbf{k}) \\ d_{z}(\mathbf{k}) & d_{x}(\mathbf{k}) + id_{y}(\mathbf{k}) \end{pmatrix}$ d vectorial oddfunction of \mathbf{k} $\begin{pmatrix} m_{z} = 0: \ d_{z}(\mathbf{k}) [c_{\mathbf{k}\uparrow}^{\dagger}c_{-\mathbf{k}\downarrow}^{\dagger} + c_{\mathbf{k}\uparrow}^{\dagger}c_{-\mathbf{k}\downarrow}^{\dagger}] \\ m_{z} = 1: [-d_{x}(\mathbf{k}) + id_{y}(\mathbf{k})]c_{\mathbf{k}\uparrow}^{\dagger}c_{-\mathbf{k}\uparrow}^{\dagger} \end{pmatrix}$

UPPSALA UNIVERSITET Solution Equations

 $\begin{aligned} & \text{QP energy (eigenvalue):} \quad E_{\mathbf{k}} = \sqrt{\varepsilon(\mathbf{k})^2 + |\psi(\mathbf{k})|^2} \\ & E_{\mathbf{k}} = \sqrt{\varepsilon(\mathbf{k})^2 + |\mathbf{d}(\mathbf{k})|^2 \pm \mathbf{q}(\mathbf{k})|} \qquad \begin{pmatrix} \hat{\Delta}\hat{\Delta}^{\dagger} = |\mathbf{d}|^2 \hat{\sigma}_0 + \mathbf{q} \cdot \hat{\sigma} \\ \mathbf{q} = i(\mathbf{d} \times \mathbf{d}^*) \\ \text{Finite } \mathbf{q} = \text{non-unitary} \end{aligned} \end{aligned}$ $\begin{aligned} & \text{Self-consistency:} \quad \Delta_{ss'}(\mathbf{k}) = -\sum_{\mathbf{k}', s_3, s_4} V_{s'ss_3s_4}(\mathbf{k}, \mathbf{k}') \mathcal{F}_{s_3s_4}(\mathbf{k}', \beta) \\ & \hat{\sigma}(\mathbf{k}, \beta) = \frac{\hat{\Delta}(\mathbf{k})}{2E_{\mathbf{k}}} \tanh\left[\frac{\beta E_{\mathbf{k}}}{2}\right] \qquad (\text{unitary states}) \end{aligned}$ $\begin{aligned} & \text{Linearize close to } \mathbf{T}_c: \ v\Delta_{s_1s_2}(\mathbf{k}) = -\sum_{s_3s_4} \langle V_{s_2s_1s_3s_4}(\mathbf{k}, \mathbf{k}')\Delta_{s_3s_4}(\mathbf{k}') \rangle_{\mathbf{k}'} \\ & \frac{1}{v} = N(0) \int_0^{\varepsilon_c} d\varepsilon \frac{\tanh\left[\frac{\beta_c \varepsilon(k)}{2}\right]}{\varepsilon(\mathbf{k})} = \ln(1.14\beta_c \varepsilon_c) \end{aligned}$ $\begin{aligned} & \text{Linear eigenvalue equation} \end{aligned}$

- The largest eigenvalue gives T_c
- The eigenfunction spaces (Δ) form a basis of an irreducible representation (irrep) of the symmetry group of the equation (V)
- → Possible SC symmetries belong to irreps of the symmetry group of H
- \rightarrow SC state always breaks U(1) but can also break
 - Crystal lattice symmetry
 - Spin-rotation symmetry
 - Time-reversal symmetry

Below T_c:

- $\,2^{nd}\,\text{SC}$ transition from same V $\buildrel \rightarrow\,$ new Δ belongs to same irrep
- $-~2^{nd}\,SC$ transition from other V

UPPSALA UNIVERSITET Basis gap functions: D_{4h}

• D_{4h} = tetragonal symmetry (cuprates with $k_z = 0$)

Irreducible representation Γ	Basis function
epresentation 1	Dasis function
	(a) Spin-singlet
Γ_1^+	$\psi(\Gamma_1^+;\mathbf{k})=1, k_x^2+k_y^2, k_z^2$ s-wave, extended s-wave
Γ_2^+	$\psi(\Gamma_2^+;\mathbf{k}) = k_x k_y (k_x^2 - k_y^2)$
Γ_3^+	$\psi(\Gamma_2^+;\mathbf{k}) = k_x k_y (k_x^2 - k_y^2)$ $\psi(\Gamma_3^+;\mathbf{k}) = k_x^2 - k_y^2 d(x^2 - y^2) \text{-wave}$
Γ_4^+	$\psi(\Gamma_4^+;\mathbf{k}) = k_x k_y$ $d(xy)$ -wave
Γ_2^+ Γ_3^+ Γ_4^+ Γ_5^+	$\psi(\Gamma_5^+, 1; \mathbf{k}) = k_x k_z$
	$\psi(\Gamma_5^+,2;\mathbf{k}) = k_y k_z$
	(b) Spin-triplet
Γ_1^-	$\mathbf{d}(\Gamma_1;\mathbf{k}) = \mathbf{\hat{k}} \mathbf{\hat{k}}_x + \mathbf{\hat{y}} \mathbf{k}_y, \ \mathbf{\hat{z}} \mathbf{k}_z$
Γ_2^-	$\mathbf{d}(\Gamma_2^-;\mathbf{k}) = \mathbf{\hat{x}} k_v - \mathbf{\hat{y}} k_x$
Γ_3^-	$\mathbf{d}(\Gamma_3;\mathbf{k}) = \mathbf{\hat{x}}k_x - \mathbf{\hat{y}}k_x$
Γ_4^-	$\mathbf{d}(\Gamma_4^-;\mathbf{k}) = \mathbf{\hat{x}}k_v + \mathbf{\hat{y}}k_x$
Γ_5^{-}	$d(\Gamma_5, 1; \mathbf{k}) = \hat{\mathbf{x}}k_z, \hat{\mathbf{z}}k_z \rightarrow p(\mathbf{x})$ - and $p(\mathbf{y})$ -wave degenerated
-	$\mathbf{d}(\Gamma_5, 2; \mathbf{k}) = \hat{\mathbf{y}} k_z, \ \hat{\mathbf{z}} k_y \int p(\mathbf{k}) \ and \ p(\mathbf{y}) \ wave degenerated$

Sigrist and Ueda, RMP 63, 239 (1991)

UNIVERSITET Basis ga	p functions: D _{6h}
• D_{6h} = hexagonal s	symmetry (graphene, Bi_2Se_3 TIs with $k_z = 0$,)
Irreducible representation Γ	Basis functions
	(a) Spin-singlet $\psi(\Gamma_1^+;\mathbf{k})=1, k_2^++k_2^+, k_2^-$ s-wave, extended s-wave $\psi(\Gamma_2^+;\mathbf{k})=k_2k_2(k_2^+-3k_2^2)(k_2^+-3k_2^-)$ $\psi(\Gamma_2^+;\mathbf{k})=k_2k_2(k_2^+-3k_2^-)$ $\psi(\Gamma_2^+;\mathbf{k})=k_2k_2(k_2^+-3k_2^-)$
Γ_5^+	$\psi(\Gamma_{j}^{+},1;\mathbf{k}) = k_{x}k_{z}$ $\psi(\Gamma_{j}^{+},2;\mathbf{k}) = k_{y}k_{z}$
Γ_6^+	$\psi(\Gamma_{k}^{+},\mathbf{l};\mathbf{k}) = k_{k}^{2} - k_{j}^{2}$ $\psi(\Gamma_{k}^{+},2;\mathbf{k}) = 2k_{k}k_{j}$ (b) Spin-triplet
Γ_1^-	$\mathbf{d}(\Gamma_1^-;\mathbf{k}) = \mathbf{\hat{x}} \mathbf{k}_x + \mathbf{\hat{y}} \mathbf{k}_y, \mathbf{\hat{z}} \mathbf{k}_z$
$\begin{array}{c} \Gamma_1^- \\ \Gamma_2^- \\ \Gamma_3^- \end{array}$	$\begin{array}{l} \mathbf{d}(\Gamma_{2}^{-};\mathbf{k}) = \mathbf{\hat{x}}k_{j} - \mathbf{\hat{y}}k_{j} \\ \mathbf{d}(\Gamma_{3}^{-};\mathbf{k}) = \mathbf{\hat{z}}k_{j}^{-}, (k_{2}^{-} - \mathbf{\hat{x}}_{j}^{2}), \\ k_{1}[(k_{x}^{2} - k_{y}^{2})\mathbf{\hat{x}} - 2k_{x}k_{y}\mathbf{\hat{y}}] \end{array}$
Γ_4^-	
Γ_5^-	$d(\Gamma_{5}^{-},1;\mathbf{k}) = \widehat{\mathbf{x}}k_{x}, \widehat{\mathbf{z}}k_{x}$ $d(\Gamma_{5}^{-},2;\mathbf{k}) = \widehat{\mathbf{y}}k_{x}, \widehat{\mathbf{z}}k_{y}$
Γ_6^-	$d(\Gamma_6^-,1;\mathbf{k}) = \widehat{\mathbf{x}}k_x - \widehat{\mathbf{y}}k_y$ $d(\Gamma_6^-,2;\mathbf{k}) = \widehat{\mathbf{x}}k_y - \widehat{\mathbf{y}}k_x$
Sigrist and Ueda, RMP 63, 239 (1991)	

Unconventional Superconductivity

What is unconventional?

Any SC state which is does not have spin-singlet *s*-wave order How do we handle unconventional superconductivity? Generalized formalism using a 4 x 4 BdG equation

The superconducting state especially interesting if it has multiple components

- Two-dimensional irreps gives $\Delta_1 + i\Delta_2$
 - singlet $d(x^2-y^2)+id(xy)$ -wave for hexagonal lattices (graphene?)
 - triplet ($m_z = 0$) p(x)+ip(y)-wave for square lattices (Sr₂RuO₄)

Break time-reversal symmetry (TRS)

Topological superconductors

- Subdominant pairing
 - singlet $d(x^2-y^2)$ +is-wave (cuprates with small s-wave component)

Breaks TRS but not a topological superconductor