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Introduction to Superconductivity 
 

What is it? 
 

How do we describe it? 

What is Superconductivity? 
•  What is superconductivity? 

– Electric transport without resistance 

– Meissner effect 
 

Magnet 

Superconductor 



History of Superconductivity 

Heike Kammerlingh Onnes 

Superconductivity in Hg: 

Tc 

Superconductors 

Department of  Energy 

Nobel Prizes  

How? 
•  But how do the electrons move without 

resistance? 
– The electrons are all in a coherent quantum state 

with a fixed phase (condensate) 

 
– One of the few macroscopic manifestations of QM 
–  Spontaneous gauge symmetry breaking – Higgs 

mechanism (discovered by P. W. Anderson before Higgs et al.) 
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Higgs Mechanism 
•  In the Standard Model: 

–   Interactions with the Higgs field (Higgs bosons) give masses to the W+,- and Z 
bosons due to electroweak (gauge) symmetry breaking  

•  In superconductors: 
–  The superconducting pairs give mass to the electromagnetic field (photons) due 

to spontaneous symmetry breaking of the gauge symmetry (fixed phase on Ψ) 
–   Explored by P.W. Anderson for superconductivity 2 years before Higgs et al. 

Meissner effect = The “Higgs mass” of  
the electromagnetic field expels it from 

the superconductor 

But Wait! 
•  All electrons in one state: a superconducting 

condensate 
– Pauli exclusion principle?? 

How do electrons end up in the same state? 

 

Statistics 
•  Fermions (half-integer spin): 

–   Electrons, quarks, neutrinos 
–  Only one electron per quantum state 

•  Bosons (integer spin): 
– Photons, gauge, and Higgs boson 
– As many particles as you wish in one quantum state 
     (Bose-Einstein condensate, BEC) 

 Maybe two electrons can form an electron pair!? 

Sort of, but not the whole story…. 

Electron Pairing 
•  Electrons are negatively charged, how can they 

possibly pair? 
–  In fact, they can pair pretty easily (at least at very, very low 

temperatures) 
 

•  The only instability of a Fermi Liquid is to 
attractive interactions 
–  Any attractive interaction destroys the Fermi Liquid and 

creates electron pairs: Cooper pairs 



Attractive Interaction 
•  Where is attractive interaction coming from? 

Normal state At Tc In the superconducting state 

Electron-lattice vibration (phonon) interactions gives an 
effective attractive potential between two electrons 

Conventional Superconductors 

•  Superconductivity from electron-phonon interactions 

–  Superconductivity in “normal” metals 
– Low temperatures, Tc < 40 K 

BCS Theory 
•  How do the Cooper pairs condense (superconduct)? 

•  Bardeen-Cooper-Schrieffer (BCS) theory: 
– Condensation of Cooper pairs (with a fermionic wave function) 

– Truly many-body state (not a two-body bound state condensing) 

   (Higher temperatures than BECs) 

Cooper Pairs 
Pair of electrons above the Fermi surface (FS) with no net momentum: 

 

 
 

 

Fourier transform (                                    ): 

 
 

 

 

 

For                                   the energy of a Cooper pair is < 0 
 

! FS is unstable to Cooper pair formation for any V<0 
(see e.g. Tinkham: Introduction to superconductivity) 

spatial property of  the Cooper pair  
attractive 



BCS Wave Function 
Coherent state of Cooper pairs (ansatz): 

 

 
 

 

 

 

 

 

 

•  Ill-defined number of particles: 

•  Breaks gauge invariance: 

with 

phase of  order parameter: fixed  
(but same energy for all phases) 

BCS Hamiltonian 
Pairing Hamiltonian: 

 

 

 

 

We can determine uk, vk in ψBCS by minimizing <ψBCS|H-µN|ψBCS> 
but it is a bit clumsy (see e.g. Tinkham: Introduction to superconductivity) 

 

Instead we use mean-field theory with the order parameter 

 
 

pair amplitude at k (off-diagonal long-range order) 
 

 

 

 

 

kinetic (band) energy 

 

 

 
 

 

 

 

 

Set the order parameter 

 
 

!  

 

 

 

 

Mean-Field Treatment 
 

 

 

 

 

ignore fluctuations 
 (mean-field approximation) 

Matrix Formulation (BdG) 
 

Define the Nambu spinor 
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!                                                 (                        )    

 

 
 

 

 

 

 

 

constant TRS: εk= ε�k 

Bogliubov-de Gennes (BdG) formulation:  
2x2 matrix problem 

! Solve by finding eigenvalues and vectors  



Eigenstates = Quasiparticles 
QP energy (eigenvalue): 

 
 

QP operators (eigenvector): 

 
 

 

 

 

 

 

 

Diagonal Hamiltonian:   
 

 

 

 
 

 

 

 

 

 

Bogoliubov 
tranformation 

Condensation 
energy 

QP excitations 

(Same coefficients as 
in the BCS wave fcn) 

Quasiparticle Properties 
•  Excitations out of the condensate, always positive energy 

 
 

 

 

 

 
 

 

 

 

 

 

P. Coleman: Introduction to Many Body Physics 

Band structure Density of  states (DOS) 

Quasiparticle Properties II 
•  Excitation 

 creates electron with momentum k and spin up, 

 destroys electron with momentum –k and spin down  

•  At E = 0:                          ! QP is equal parts electron and hole  
     

     ! Can become its own antiparticle 
      (Majorana fermion)  

 

 

 

 

•    

 
 

 

 

 

 
 

 

 

 

 

 

annihilates ground state 
puts 1 electron in state –k,  

 and prevents a Cooper pair at 
momentum k 

Self-Consistent Equation 
Having found the diagonal Hamiltonian we can determine the 
superconducting order parameter self-consistently: 

 
 

 

 

 
 

 

 

 

 

 

Fermi-Dirac 
distribution 

At T = 0: 
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BCS wave function: 

Hamiltonian with kinetic energy εk and a pairing potential Vkl: 

 

 

 

 

Summary BCS Theory 
|BCSi =

Y

k

(uk + vkc
†
k"c

†
�k#)|�0i

Cooper pair 

Quasiparticle energy: 

Order parameter (Ψ before): 

Ek =
q

"2k + |�k|2
Energy gap = 

order parameter 

Quasiparticles:  

Introduction to Superconductivity 
 

What is it? 
A charged superfluid of  Cooper pairs (2 electrons) with fermionic character 
 

Cooper pairs formed by effective attractive interaction 
 
 
 

How do we describe it? 
BCS theory for the condensation 
 

BdG matrix formalism 

Unconventional Superconductivity 
 

What is unconventional? 
 

How do we handle unconventional superconductivity? 

Conventional Superconductors 

•  Superconductivity from electron-phonon interactions 

–  Superconductivity in “normal” metals 
– Low temperatures, Tc < 40 K 
–  Isotropic pairing (                       = Δ) �k = �1

2

X

l
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Superconducting Symmetries 
Superconducting order parameter is fermionic      
i.e. odd under particle exchange:  

! η even function in k  

 ↵�(k) = �ei'⌘(k)�↵�

 ↵�(k) = � �↵(�k)

orbital spin 

! η odd function in k  

x

Spatial Symmetries 
•  Conventional superconductors: 

–  Spin-singlet, s-wave (η k-independent) 

•  Cuprate (high-Tc) superconductors: 
–  Spin-singlet, d-wave (η = kx

2 - ky
2) 

•  Exotic superconductors: 
–  Spin-triplet, p-wave (3He, Sr2RuO4?) 
–  Topological “spinless” superconductors                                 

with Majorana fermions 

i 

i 

kx + ik y 

x

y

y

UNCONVENTIONAL 

Superconducting Symmetries 
Vk,k’ (and the band structure) determines the pairing symmetry, but 
it often very hard to determine 
•  Lattice fluctations: spin-singlet s-wave  

•  Antiferromagnetic spin fluctuations: spin-singlet d-wave (extended s-wave) 

•  Ferromagnetic spin fluctuations: spin-triplet p-wave 

•  Strong on-site repulsion (Heisenberg interaction): spin-singlet d-wave 

 

Is there a way to determine the possible pairing symmetries in a 
material without knowledge of Vk,k’? 

 

Yes, we can do a general symmetry group analysis 
See e.g. Sigrist and Ueda, RMP 63, 239 (1991) 

General Pairing Hamiltonian 
General pairing Hamiltonian: 

 
 

 

 

 

Mean-field order parameter: 
 

 

 

 

!  
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 



Matrix Formulation 
4-component notation (Nambu): 
 

 

!  
 

 

 

Spin-singlet pairing: 

 
 

 

Spin-triplet pairing: 

 
 

 mz = 0: 

 mz = 1: 
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ψ even 
function of  k 

d vectorial odd 
function of  k 
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Solution Equations 
QP energy (eigenvalue): 

 
 

 

Self-consistency: 
 

 

 

 

 

 

 

 Linearize close to Tc: 
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Finite q = non-unitary 

  

(unitary states) 

Linear eigenvalue equation 

Solution 
•  The largest eigenvalue gives Tc 

•  The eigenfunction spaces (Δ) form a basis of an irreducible 
representation (irrep) of the symmetry group of the equation (V) 

! Possible SC symmetries belong to irreps of the symmetry group 
of H 

! SC state always breaks U(1) but can also break 
–  Crystal lattice symmetry 
–  Spin-rotation symmetry 
–  Time-reversal symmetry 

Below Tc: 
–  2nd SC transition from same V ! new Δ belongs to same irrep 
–  2nd SC transition from other V 
 

 

 

 

 
 

 

 

 

 

 

Basis gap functions: D4h 

•  D4h = tetragonal symmetry (cuprates with kz = 0) 

Spin-singlet 

Spin-triplet 

s-wave, extended s-wave 

d(xy)-wave 
d(x2-y2)-wave 

p(x)- and p(y)-wave degenerate 

Sigrist and Ueda, RMP 63, 239 (1991) 



Basis gap functions: D6h 

•  D6h = hexagonal symmetry (graphene, Bi2Se3 TIs with kz = 0,) 

Spin-singlet 

Spin-triplet 

s-wave, extended s-wave 

d(x2-y2)-wave and d(xy)-wave degenerate 

Sigrist and Ueda, RMP 63, 239 (1991) 

Multiple Order Parameters 
The superconducting state especially interesting if it has 
multiple components 

•  Two-dimensional irreps gives Δ1+iΔ2 

–  singlet d(x2-y2)+id(xy)-wave for hexagonal lattices (graphene?) 
–  triplet (mz = 0) p(x)+ip(y)-wave for square lattices (Sr2RuO4) 

Break time-reversal symmetry (TRS) 
Topological superconductors 
 

•  Subdominant pairing 
–  singlet d(x2-y2)+is-wave (cuprates with small s-wave component) 

Breaks TRS but not a topological superconductor 

Unconventional Superconductivity 
 

What is unconventional? 
 Any SC state which is does not have spin-singlet s-wave order 

 

How do we handle unconventional superconductivity? 
 Generalized formalism using a 4 x 4 BdG equation 


