Theory of Spectroscopy on Strongly Correlated Electron Systems

Jeroen van den Brink

Ament, van Veenendaal, Devereaux, Hill & JvdB
Rev. Mod. Phys. 83, 705 (2011)

7th MaNEP Winterschool
Saas Fee 09.01.2017
Lectures: outline

1. Intro to Spectroscopy, Correlations & RIXS

2. Theory for RIXS scattering amplitude

3. Magnetic RIXS: Theory and Experiment

High Tc superconducting cuprates

La$_2$CuO$_4$ crystal structure

- Introduce cuprates
- Bimagnon RIXS Cu K-edge
- Single Magnon RIXS Cu L-edge
- Magnetic RIXS on iridates
- Paramagnons in doped cuprates
Correlation Effects: Zaanen-Sawatzky-Allen

![Diagram of La$_2$CuO$_4$]

Charge Transfer Insulator

Zaanen, Sawatzky, Allen
PRL 55, 418 (1985)

La$_2$CuO$_4$ magnetic structure

![Diagram of magnetic structure]

strongly correlated antiferromagnet
spin $1/2$ insulator
gap ~ 2 eV

Atomic Model: Local d-d orbital splitting: Cu$^{2+}$

Cubic Crystal field splitting

Cu$^{2+}$
3d9

Holes per CuO$_2$ Square

Cu-O phase diagram

High-T$_c$ Phase Diagram

very strange metal
messy insulator
antiferromagnet
less strange metal

Temperature

Ultra-short Core-hole Life-time expansion

- short life-time τ of the high energy core-hole
- large core-hole broadening $\Gamma = \hbar/\tau$

RIXS amplitude

$$F_{fg} = \langle f|D^d G(z_k) D|g\rangle$$

$$z_k = E_g + \hbar \omega_k + i\Gamma$$

large

$$G(z_k) = \frac{1}{2z_k - H} = \sum_n \frac{|n\rangle\langle n|}{z_k - E_n}$$

= constant

RIXS response governed by (dipole) transition operators

Direct **RIXS amplitude @ transition metal L-edge**

Ament, Ghiringhelli, Moretti, Braicovich & JvdB, PRL 103, 117003 (2009)

Ament, Ghiringhelli, Moretti, Braicovich & JvdB, PRL 103, 117003 (2009)

Orbital excitations by direct RIXS on La_2CuO_4

Moretti, Bisogni, Aruta, Balestrino, Berger, Brookes, Laca, Castro, Grioni, Guarise, Medaglia, Miletto, Minola, Perna, Radovic, Salluzzo, Schmitt, Zhou, Braicovich & Ghiringhelli, NJP 13, 043026 (2011)

K-edge RIXS on La_2CuO_4

500 meV peak! Phonons? d-d excitation? Magnons?

J. Hill et al., PRL 100, 097001 (2008)

Indirect Resonant Inelastic scattering mechanism

Initial: $1s$ core

Intermediate: Conduction, Valence, $4p$ empty

Final: $1s$ core

Indirect Resonant Inelastic scattering mechanism

Initial: $1s$ core

Intermediate: Conduction, Valence, $4p$ empty

Final: $1s$ core

U_{core}
Indirect Resonant Inelastic scattering mechanism

Initial state:
- 4p empty
- conduction
- valence
- 1s core

Final state:
- 1s core

Intermediate state:
- 4p empty
- conduction
- valence
- 1s core

\(U_{\text{core}} \) in the initial and final states.

Indirect Resonant Inelastic scattering mechanism

Initial state:
- 4p empty
- conduction
- valence
- 1s core

Final state:
- 1s core

Intermediate state:
- 4p empty
- conduction
- valence
- 1s core

\((q, \omega) \) in the intermediate state.

\(\hat{O}_{\text{eff}} \) for low energy elementary excitations:

Core-hole potential is strong
but its life-time is ultra-short
Theory: Kramers-Heisenberg

Fermi’s Golden Rule

Scattering amplitude:
\[A_{ij} \]

Scattering intensity:
\[I_{\text{scatter}}(q,\omega) = \sum_j |A_{ij}|^2 \delta(\omega - \omega_{ji}) \]

RIXS amplitude:
\[A_{ij} = \sum_n \frac{\langle f | \bar{D} | n \rangle \langle n | \bar{D} | i \rangle}{\omega_n - E_n - i\Gamma_n} \]

Core-hole life-time

H. Kramers and W. Heisenberg, Z. Phys. 31, 681 (1925)

Theory: Ultra-short Corehole Life-time Expansion

core-hole life time is ultra-short:
\[\sim \text{femto sec} \]

core-hole broadening \(\Gamma \) is large:
\[\sim 1-2 \text{ eV} \] \(K \)-edge
\[\sim 0.5 \text{ eV} \] \(L \)-edge

suggests expansion parameter:
\[\frac{1}{\omega_{in} - \omega_{res} - i\Gamma} = \frac{1}{\Delta} \]
with
\[\Delta = \omega_{in} - \omega_{res} - i\Gamma \]

Spin-photon coupling for Cu K-edge RIXS

How does intermediate state core-hole couple to spins?
Go back to Hubbard model

Hopping amplitude \(t \)
Coulomb repulsion \(U \)

with core hole:
\[\Delta E = U \Rightarrow J = \frac{4t^2}{U} \]

Spin-photon coupling for Cu K-edge RIXS

How does intermediate state core-hole couple to spins?
Go back to Hubbard model

Hopping amplitude \(t \)
Coulomb repulsion \(U \)

with core hole:
\[\Delta E = U \Rightarrow J = \frac{4t^2}{U} \]

intermediate state at \(U \cdot U_c \)
Spin-photon coupling for Cu K-edge RIXS

How does intermediate state core-hole couple to spins?
Go back to Hubbard model

Hopping amplitude t
Coulomb repulsion U

Core-hole locally modifies superexchange J!

intermediate state at $U - U_c$

K-edge RIXS on La_2CuO_4: two-magnon scattering

Intermediate state modification of J
leads in first order to

$$A_{fi} = \frac{\omega_{\text{res}}}{\Delta^2} \eta \langle f | \sum_{k,q} J_{k+q} S_k \cdot S_{-k+q} | i \rangle$$

2-magnon excitations are probed:

$$\propto \eta J \langle f | \sum_{k} f(k) \alpha_k \alpha_k^\dagger | 0 \rangle$$

JvdB, EPL 80, 47003 (2007)
F. Forte, L. Ament & JvdB, PRB 77, 134428 (2008)

+ magnon-magnon interactions:

T. Nagao, J. Igarashi, PRB 75, 214414 (2007)

Two-magnon scattering: experiment v. theory I

Selection rule: vanishing intensity at $q = (0,0)$ and $q = (\pi,\pi)$

Two-magnon RIXS intensity

Two-magnon scattering: experiment v. theory II

F. Forte, L. Ament & JvdB, PRB 77, 134428 (2008)

Theory
Theory + experimental resolution

J. Hill et al., PRL 100, 097001 (2008)
Two-magnon scattering: experiment v. theory III

F. Forte, L. Ament & JvdB, PRB 77, 134428 (2008)

Direct Magnetic RIXS

Cu L-edge

Direct RIXS @ TM L-edges

Cu L-edge

3d

~900 eV

Energy loss

Momentum transfer

2p

3d

~900 eV

Energy loss

Momentum transfer
Direct RIXS @ TM L-edges

Cu L-edge

$\sim 900 \text{ eV}$

Momentum transfer

Energy loss

2p

3d

Direct RIXS @ TM L-edges

Cu L-edge

$\sim 900 \text{ eV}$

Momentum transfer

Energy loss

2p

$s=1/2$

$l=1$

l•s

Direct RIXS @ TM L-edges

Cu L-edge

$\sim 900 \text{ eV}$

Momentum transfer

Energy loss

2p

$s=1/2$

$l=1$

dd excitation

spin flip

Ir L-edge

$\sim 11.2 \text{ keV}$
Atomic RIXS on Cu L-edge

- Ground state
- Final states
- Orbital+spin flip
- Spin // z
- No spin flip without orbital flip

RIXS spin-flip amplitude @ transition metal L-edge

- Ament, Ghiringhelli, Moretti, Braicovich & JvdB, PRL 103, 117003 (2009)

- Ament, Ghiringhelli, Moretti, Braicovich & JvdB, PRL 103, 117003 (2009)
RIXS spin-flip amplitude @ transition metal L-edge

\[x^2 - y^2 \]

Ament, Ghiringhelli, Moretti, Braicovich & JvdB,
PRL 103, 117003 (2009)

Magnetic RIXS on Cu L-edge

\[\downarrow \text{hole in } x^2-y^2 \text{ orbital} \]

\[\text{spin } // z \quad \text{spin } \perp z \]

Create Single Magnon

Ament, Ghiringhelli, Moretti, Braicovich & JvdB,
PRL 103, 117003 (2009)

Magnetic RIXS on La}_2\text{CuO}_4 @ Cu L-edge

In special cases direct spin-flip scattering is allowed at Cu L-edge

CuO's are such special cases...
High resolution Cu L-edge RIXS spectrum

- magnon
- phonon
- zero-loss
- bimagnon

Magnetic L-edge RIXS on La$_2$CuO$_4$

In special cases direct spin-flip scattering is allowed

Magnetic L-edge RIXS on La$_2$CuO$_4$

- In general: Single spin-flip amplitude related to circular magnetic dichroism in absorption
- CuO's are such cases!

RIXS magnon dispersion of Sr$_2$CuO$_2$Cl$_2$

- deviation from simple Heisenberg

Braicovich, JvdB et al., PRL 104, 077002 (2010)

Haverkort, PRL 105, 167404 (2010)

Guarise et al., PRL 105, 157006 (2010)

Braicovich, JvdB et al., PRB 81, 174533 (2010)
Magnetic RIXS vs. Inelastic Neutron Scattering

<table>
<thead>
<tr>
<th>RIXS</th>
<th>Neutrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>small</td>
<td>large</td>
</tr>
</tbody>
</table>

What about magnons in iridates?

Sr$_2$IrO$_4$: equivalent of cuprate La$_2$CuO$_4$

Ir (4+) = 5d5

$J=L+S$

t_{2g}^5: single hole $s=1/2$ in 3-fold degenerate $l=1$ state

Sr$_2$IrO$_4$: equivalent of cuprate La$_2$CuO$_4$

J$_{eff}$=3/2
doublet

J$_{eff}$=1/2
quartet

Jackeli & Khaliullin, PRL 102,017205 (2009)
B.J. Kim, Ohsumi, Komesu, Sakai, Morita, Takagi, Arima, Science 323, 1329 (2009)
Magnon dispersion

Direct RIXS on Sr_2IrO_4

- $3\lambda/2$
- doublet

Ament, Khaliullin & JvdB
PRB 84, 020403 (2011)

Direct RIXS on Sr_2IrO_4

- $3\lambda/2$
- quartet
- doublet

Jungho Kim,1 D. Casa,1 M. H. Upton,1 T. Gog,1 Young-June Kim,2 J. F. Mitchell,3 M. van Veenendaal,1,4 M. Daghofer,5 J. van den Brink,5
G. Khaliullin,6 B. J. Kim7,8,9 PRL 108, 177003 (2012)

Magnetic RIXS paramagnons

doped quasi-2D Cu-oxides

Jungho Kim,1 D. Casa,1 M. H. Upton,1 T. Gog,1 Young-June Kim,2 J. F. Mitchell,3 M. van Veenendaal,1,4 M. Daghofer,5 J. van den Brink,5
G. Khaliullin,6 B. J. Kim7,8,9 PRL 108, 177003 (2012)
Magnetic L-edge RIXS on 8% doped La$_{2-x}$Sr$_x$CuO$_4$

$T_c = 21K$

Dynamical structure factor Hubbard model, QMC

$U=8t$

Intense paramagnon excitations in a large family of high-temperature superconductors

Jia, Nowadnick, Wohlfeld, Kung, Chen, Johnston, Tohyama, Moritz & Devereaux
Nat. Comm. 5, 3314 (2014)
Summary part 3

• RIXS sensitive to magnetic excitations of e.g. low D cuprates, iron pnictides and iridates
• Magnons, spinons and paramagnons are observed
• Dispersion of these modes can be determined
• Observed paramagnons are challenge for theory
• It can reasonably be assumed that the future of RIXS is even brighter than its past
• More and better experiments, instruments, theory